Synthesis of Three-Dimensionally Ordered Macroporous NiCe Catalysts for Oxidative Dehydrogenation of Propane to Propene
نویسندگان
چکیده
Three-dimensionally ordered macroporous (3DOM) NiCe catalysts with different Ni/Ce molar ratio were fabricated using the colloidal crystal templating method. The physic-chemical properties of the samples were characterized by various techniques, including N2 adsorption–desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, and H2-temperature-programmed reduction (TPR) characterizations. The results revealed that the 3DOM NiCe samples preserved the three-dimensionally ordered macroporous channels with interlinked microor mesoporous structure and highly dispersed nickel oxide species in the framework upon different amount of nickel incorporation. In the evaluation of the oxidative dehydrogenation (ODH) of propane, the 3DOM NiCe catalysts exhibited higher selectivity and yield to propene than the amorphous NiCe catalyst. An optimum yield of propene of 11.9% with the 30.3% propane conversion at 375 ◦C was obtained over the 3DOM 2NiCe catalyst. Combining XRD, TPR, and Raman analysis, it could be found that the nickel incorporation in CeO2 lattice produced a high concentration of oxygen vacancies that were the active sites for the oxidative dehydrogenation of propane. Besides this, the 3DOM structure promoted the rapid diffusion of the reactants and products—favorable for the generation of propene in the ODH of propane.
منابع مشابه
Operating condition effect on achieving higher propene yield in propane oxidative dehydrogenation process
Supported vanadia catalyst was successfully synthesized using wet impregnation of gamma-Alumina to study Propane Oxidative Dehydrogenation (POD). The prepared catalysts were characterized with XRD, BET, and TPR tests. In a broad temperature range (340 to 630°C), effects of vanadia loading (2.7, 5.4, and 9 wt%) and propane to oxygen ratio (3/1 to 1/3) were investigated on propane conversion as w...
متن کاملOperating condition effect on achieving higher propene yield in propane oxidative dehydrogenation process
Supported vanadia catalyst was successfully synthesized using wet impregnation of gamma-Alumina to study Propane Oxidative Dehydrogenation (POD). The prepared catalysts were characterized with XRD, BET, and TPR tests. In a broad temperature range (340 to 630°C), effects of vanadia loading (2.7, 5.4, and 9 wt%) and propane to oxygen ratio (3/1 to 1/3) were investigated on propane conversion as w...
متن کاملKinetic Isotopic Effects in Oxidative Dehydrogenation of Propaneon Vanadium Oxide Catalysts
Kinetic isotopic effects (KIEs) for oxidative dehydrogenation of propane were measured on 10 wt% V2O5/ZrO2. Normal KIEs were obtained using CH3CH2CH3 and CD3CD2CD3 as reactants for primary dehydrogenation (2.8) and combustion (1.9) of propane and for secondary combustion of propene (2.6), suggesting that in all cases C–H bond dissociation is a kinetically relevant step. CH3CH2CH3 and CH3CD2CH3 ...
متن کاملPropane oxidative dehydrogenation over vanadium oxide nanostructures supported on porous graphene prepared by hydrothermal method
In this study at first, in laboratory, three types of vanadium oxide were produced by using porous graphene and amine framework in hydrothermal method nanostructures such as: vanadium oxide - octadecyl amine - graphene, vanadium oxide - dodecyl amine - graphene and vanadium oxide – aniline - graphene (V-ODA-G، V-DDA-G، V-A-G). Then their structures and functions in propane dehydrogenation react...
متن کاملStructure and Properties of Vanadium Oxide–Zirconia Catalysts for Propane Oxidative Dehydrogenation
The structure of vanadia species supported on zirconia depends on VOx surface density and on the temperature of catalyst oxidation pretreatments. X-ray diffraction and Raman and UV-visible spectroscopies show that supported VOx species form polyvanadate domains of increasing size and ultimately monolayers and clusters as vanadium surface density increases. Initial propene selectivities in oxida...
متن کامل